При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

А. Путь Б. Работа В. Сила	1) скалярная величина 2) векторная величина
--	---

1) A1 B1 B2

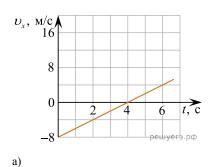
2) A1 B2 B1

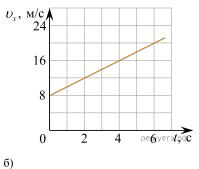
3) A1 B2 B2

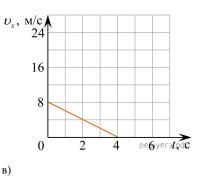
4) А2 Б1 В1

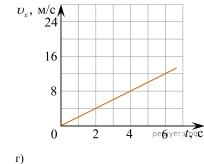
5) A2 B2 B1

2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 5,0$ с он проехал путь $s_1 = 60$ м, то за промежуток времени $\Delta t_2 = 7,0$ с велосипедист проедет путь s_2 , равный:


1) 64 м


2) 70 м


4) 84 m


5) 90 м

3. Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + Bt$, где A = -8 м/с, B = 2 м/ с². Этой зависимости соответствует график (см. рис.), обозначенный буквой:

2) _б 1) a

3) B

4) Γ **5)** д

4. На поверхности Земли на тело действует силя тяготения, модуль которой $F_1 = 144$ Н. Если это тело находится на расстоянии

1) 16 H

2) 24 H

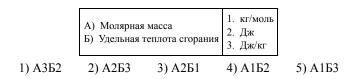
3) 36 H

4) 48 H

5. Металлический шарик массой m=80 г падает вертикально вниз на горизонтальную поверхность стальной плиты и отскакивает от нее вертикально вверх с такой же по модулю скоростью: $\upsilon_2=\upsilon_1$. Если непосредственно перед падением на плиту модуль его скорости $\upsilon_1 = 5,0$ $\frac{M}{c}$, то модуль изменения импульса $|\Delta p|$ шарика при ударе о плиту равен: $1) \ 0,2 \frac{K\Gamma \cdot M}{c} \qquad 2) \ 0,4 \frac{K\Gamma \cdot M}{c} \qquad 3) \ 0,6 \frac{K\Gamma \cdot M}{c} \qquad 4) \ 0,8 \frac{K\Gamma \cdot M}{c} \qquad 5) \ 1,0 \frac{K\Gamma \cdot M}{c}$

6. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды $(\rho_2 = 1,00 \text{ г/см}^3)$ высотой $H = 6,8 \text{ см. Разность } \Delta h$ уровней ртути в сосудах равна:

1) 8,8 mm


2) 7,3 mm

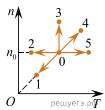
3) 6,0 mm

4) 5,0 mm

5) 3,0 мм

7. Установите соответствие между физической величиной и единицей её измерения:

8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на Δp = 120 кПа, а абсолютная температура возросла в k = 2,00 раза, то давление p_2 газа в конечном состоянии равно:


2) 210 κΠa

3) 240 κΠa

4) 320 κΠa

5) 360 кПа

9. На рисунке изображена зависимость концентрации n молекул от температуры T для пяти процессов с идеальным газом, количество вещества которого постоянно. Давление газа p изохорно увеличивалось в пронессе:

1)
$$0-1$$
 2) $0-2$ 3) $0-3$ 4) $0-4$ 5) $0-5$

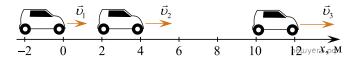
10. Физической величиной, измеряемой в джоулях, является:

1) индуктивность

2) сила Лоренца

3) энергия магнитного поля

4) сила тока

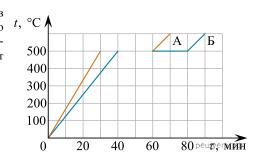

5) сила Ампера

11. Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=10$ м/с и $\upsilon_2=15$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=100 м, то чему равна высота H? Ответ приведите в метрах.

12. К бруску массой m = 0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной, а модуль ускорения бруска a = 2,4 м/с². Если длина пружины в недеформированном состоянии $l_0 = 12$ см, то ее длина l при движении равна ... см.

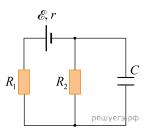
13. На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00~{\rm г/cm^3}$), равный ... ${\rm cm^3}$.

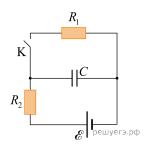
14. На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t=1,8$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля υ_x на ось Ox была равна ... км/ч.

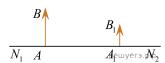


15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=2,00 кг, а площадь поперечного сечения S=10,0 см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100$ кПа. Если начальная температура газа и объем $T_1=300$ К и $V_1=4,00$ л соответственно, а при изобарном нагревании изменение его температуры $\Delta T=160$ К, то работа A, совершенная силой давления газа, равна ... Дж.

16. Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если коэффициент полезного действия печи $\eta=63\%$, то вода $(c=4,2\frac{\kappa \square ж}{\text{кг}\cdot {}^{\circ}C})$ массой m=0,40 кг за промежуток времени $\Delta \tau=80$ с, нагреется от температуры $t_1=15$ ${}^{\circ}C$ до температуры t_2 равной ... ${}^{0}C$.

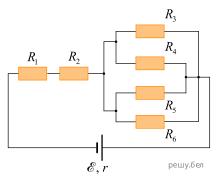

17. Два образца A и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец A имеет массу $m_{\rm A}=4,5~{\rm Kr}$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.


18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=30,0 с проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0$ В, а его внутреннее сопротивление r=1,00 Ом, то работа $A_{\rm CT.}$ сторонних сил источника тока при разомкнутом ключе К равна ... Дж.


19. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 120 В и с внутренним сопротивлением r = 2,0 Ом, конденсатора ёмкостью C = 0,60 мкФ и двух резисторов (см. рис.). Если сопротивления резисторов R_1 = R_2 = 5,0 Ом, то заряд q конденсатора равен ... мкКл.

- **20.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 8,0 A, C = 0,50 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 2,0$ с до $t_2 = 6,0$ с? Ответ приведите в кулонах.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура $U_0 = 3,0$ В, максимальная сила тока в катушке $I_0 = 1,2$ мА. Если индуктивность катушки L = 75 мГн, то ёмкость C конденсатора равна ... нФ.
- **22.** Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=300$ В, двух резисторов сопротивлениями $R_1=100$ Ом, $R_2=200$ Ом и конденсатора ёмкостью C=10 мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

23. Стрелка AB высотой H=4.0 см и её изображение A_1B_1 высотой h=2.0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

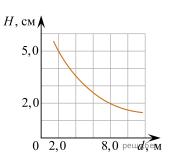

- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\phi = 30$ В, то модуль силы F электростатического взаимодействия между зарядами равен ... нH.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \, \frac{\mathrm{pag}}{\mathrm{c}},\,$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

